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1 Introduction

The maximum entropy method was introduced to physics as a way of deriving the Boltz-
mann distribution of statistical mechanics (Jaynes, 1957). This method has subsequently
been widely used in information theory, statistics, and many applications besides physics. In
this paper, we modify the definition of entropy to handle signed measures. Elsewhere (Bran-
denburger, La Mura, and Zoble, 2019), we use this modification to provide an entropy-based
characterization of the simplest quantum system, namely, the qubit.

We consider Rényi entropy (Rényi, 1961), which includes Shannnon entropy (Shannon,
1948) as a special case and is used in communication theory, computer science, and quantum
information, among other applications. Rényi entropy for ordinary (unsigned) measures was
axiomatized in Rényi (1961) and Daróczy (1963). Here, we modify the Rényi axioms so that
they retain their intent when signed measures are introduced, and we derive the family of
entropy functionals that satisfies our axioms.

2 Axioms for Entropy

Rényi (1961) showed that his definition of entropy satisfied a list of axioms which he conjec-
tured gave a characterization. Daróczy (1963) proved the conjecture. The approach followed
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by Rényi and Daróczy was first to axiomatize entropy for a larger class of measures (non-
negative measures with total weight less than or equal to one) and then to specialize the
construction to probabilities. We proceed in a similar manner by starting with a set of ax-
ioms which characterizes a notion of entropy for signed measures, and then specializing the
construction to signed probabilities.

Given a finite set X = {x1, . . . , xn}, a signed measure Q on X is defined by a tuple
Q = (q1, . . . , qn) of real numbers. The quantity w(Q) = |Σiqi| will be called the weight of Q.
We require w(Q) 6= 0 but we do not require w(Q) = 1 (except when Q is a signed probability
measure).

Given two signed measures P = (p1, . . . , pm) and Q = (q1, . . . , qn), we denote by P ∗ Q
the signed measure which is the product (p1q1, . . . , p1qn, . . . , pmq1, . . . , pmqn) whenever it is
well-defined, i.e., whenever Σi,jpiqj 6= 0. Also, we denote by P ∪ Q the signed measure
(p1, . . . , pm, q1, . . . , qn) whenever it is well defined, i.e., whenever Σipi + Σjqj 6= 0. We write
(q) for the signed measure consisting of the scalar q. We impose the following axioms on
entropy H:

Axiom 1. (Real-Valuedness) H(Q) is a non-constant real-valued function of Q.

Axiom 2. (Symmetry) H(Q) is a symmetric function of the elements of Q.

Axiom 3. (Continuity) H(Q) is a continuous function of each of the elements of Q.

Axiom 4. (Calibration) H((1
2)) = 1.

Axiom 5. (Additivity) H(P ∗Q) = H(P ) +H(Q) whenever H(P ∗Q) is well-defined.

Axiom 6. (Mean-Value Property) There is a strictly monotone and continuous function
g : R→ R such that for any P,Q, whenever H(P ∪Q) is well-defined

H(P ∪Q) = g−1[w(P )g(H(P )) + w(Q)g(H(Q))
w(P ∪Q) ].

Axiom 7. (Smoothness) H((q, 1− q)) is smooth (C∞) at q = 0.

Some comments on the axioms. The forms of Axioms 2-6 are carried over without essen-
tial change from axioms for Rényi entropy with non-negative measures. (Notice that Axiom
2 is built into the set-up.) Axiom 1 ensures that entropy can be viewed as a measure of the
amount or quantity of information in a system, and, to this end, states that entropy must
be an ordinary (i.e., real) number. This axiom has bite when applied to signed vs. unsigned
measures, because simply extending the domain of ordinary Rényi entropy to negative ar-
guments may yield a complex-valued functional. (In particular, if α is an odd integer, then
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we may get the log of a negative number.) Concerning Axiom 7, Rényi entropy with non-
negative measures is smooth in the interior of its domain. Axiom 7 imposes smoothness at
q = 0, since this is no longer a boundary value of q.

Theorem 1. Axioms 1-7 hold if and only if

H(Q) := H2k(Q) = − 1
2k − 1 log2(

∑
i | qi |2k

| ∑
i qi |

), (1)

where k = 1, 2, . . . is a free parameter.

Note that when Q is a signed probability measure, i.e., Σiqi = 1, equation (2.1) reduces
to

H2k(Q) = − 1
2k − 1 log2(

∑
i

qi
2k),

where we have also omitted the absolute value in the numerator, since 2k is an even integer.
The theorem follows from three lemmas.

Lemma 1. Under Axioms 1, 3, 4, and 5, if q 6= 0, then H((q)) = − log2 |q|.

Proof. Let h(q) := H((q)). Axioms 1 and 3 imply that h is real-valued and continuous.
Axiom 5 implies that h(pq) = h(p) + h(q) whenever p, q 6= 0. This is a version of Cauchy’s
logarithmic functional equation (Aczél and Dhombres, 1989, Equation (7) and Theorem 3)
with general solution h(q) = c log2 |q|, where c is a real constant. Axiom 4 fixes c = −1.

Lemma 2. Under Lemma 1 and Axioms 5 and 6, we have g(x) = −dx + e (linear) or
g(x) = d2(1−α)x+ e (exponential), where d 6= 0, e, and α 6= 1 are arbitrary constants.

Proof. We extend the argument in Daróczy (1963) to signed measures. If Q is a signed
measure, then from Lemma 1 and induction on Axiom 6 we obtain

H(Q) = H((q1)∪ · · · ∪ (qn)) = g−1[
∑
j w((qj)) g(H((qj)))
w((q1) ∪ · · · ∪ (qn)) ] = g−1[

∑
j |qj| g(− log2 |qj|)
|∑j qj|

]. (2)

From this and Axiom 5, we have for signed measures P and Q, provided Σi,jpiqj 6= 0

g−1[
∑
i,j |piqj| g(− log2 |piqj|)

|∑i,j piqj|
] = g−1[

∑
i |pi| g(− log2 |pi|)
|∑i pi|

] + g−1[
∑
j |qj| g(− log2 |qj|)
|∑j qj|

].

Define f : R++ → R by f(t) = g(− log2 t). Substituting, we get
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f−1[
∑
i,j |piqj| f(|piqj|)
|∑i,j piqj|

] = f−1[
∑
i |pi| f(|pi|)
|∑i pi|

]× f−1[
∑
j |qj| f(|qj|)
|∑j qj|

].

Setting Q = (q) (where q 6= 0), this becomes

1
|q|

f−1[
∑
i |pi| f(|piq|)
|∑i pi|

] = f−1[
∑
i |pi| f(|pi|)
|∑i pi|

].

Define hq : R++ → R by hq(t) = f(|q|t). Then

h−1
q [

∑
i |pi|hq(|pi|)
|∑i pi|

] = f−1[
∑
i |pi| f(|pi|)
|∑i pi|

].

This shows that the maps hq and f generate the same means when restricting the pi to be
non-negative. By a theorem on mean values (Hardy, Littlewood, and Pólya, 1952, Theorem
83), this implies that

hq(t) = a(q)f(t) + b(q),

where a(q) and b(q) are independent of t, and a(q) 6= 0. Substituting, we get

f(|q|t) = a(q)f(t) + b(q).

This functional equation (restricting q to be non-negative) has the solution

f(t) = d log2 t+ e,

or

f(t) = dtα−1 + e,

where d 6= 0, e, and α 6= 1 are arbitrary constants (Hardy, Littlewood, and Pólya, 1952,
Theorem 84). Recalling the definition of f , we then find that either

g(x) = −dx+ e, (3)

or

g(x) = d2(1−α)x + e, (4)

as required.

Lemma 3. Under Lemma 2 and Axioms 1 and 7, we have g(x) = d2(1−2k)x, where k is a
positive integer.

Proof. If g is linear as in equation (2.3), then from equation (2.2) we get
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− d ·H(Q) + e = d ·
∑
i |qi| log2 |qi|
|∑i qi|

+ e ·
∑
i |qi|

|∑i qi|
. (5)

If g is exponential as in equation (2.4), then from equation (2.2) we get

d · 2(1−α)H(Q) + e = d ·
∑
i |qi|α

|∑i qi|
+ e ·

∑
i |qi|

|∑i qi|
. (6)

Now use Axiom 7. Setting Q = (q, 1−q) in equation (2.5) we find that H((q, 1−q)) is not
C1 at q = 0. Setting Q = (q, 1− q) in equation (2.6) we find that H((q, 1− q)) is C1 at q = 0
only if e = 0. If α < 0, then H((0, 1)) is unbounded (negative), violating real-valuedness
in Axiom 1. Thus α ≥ 0. If α = 0, then H(Q) = 1 for all Q, violating non-constancy in
Axiom 1. Next, suppose α is not an integer and let k be the least integer with k > α. Then
∂H((q, 1− q))/∂q = φ(q)

ψ(q) where φ(0) 6= 0 and ψ(0) = 0. Thus α must be an integer. If α is
an odd integer then H((q, 1− q)) is eventually not differentiable at 0. It follows that α is an
even positive integer.

The sufficiency direction of Theorem 1 is finished by noting that equation (2.6) reduces
to equation (2.1) when e = 0 and α = 2k. The necessity of Axioms 1-7 is a straightforward
calculation.
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