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These appendices expand on Appendix I in the main text. Appendix J treats payoff uncertainty

and Appendix K treats dummy players.

Appendix J Payoff Uncertainty

Here we introduce uncertainty over the payoff functions. Of course, if we introduce a ‘substantial’

amount of uncertainty about the payoff functions, there is no reason to expect that the correlated

rationalizable strategies (of the original game) will be characterized by our conditions (in the new

game). The idea will be to introduce a small amount of uncertainty—specifically, we assume that

the given game is common (1− ε)-belief (Monderer-Samet [2, 1989]).

We show: Fix any game G. Every correlated rationalizable strategy in G is consistent with CI,

SUFF, RCBR, and common (1 − ε)-belief of G. But for any ε > 0, correlated rationalizability

does not characterize these conditions. We show: Fix ε > 0. There is a game G, an associated

type structure satisfying CI and SUFF, and a state at which the game is indeed G, there is common

(1− ε)-belief of G, RCBR holds, but the strategies played aren’t correlated rationalizable in G.

To state these results, we need to extend the definitions in the main text, to allow uncertainty

over payoff functions.

Fix an n-player strategic game form
〈
S1, .., Sn

〉
, and a player i. An i-payoff function is a

map πi : S → R.

Definition J1 An (S1, P 1, . . . , Sn, Pn)-based type structure is a structure

Φ = 〈S1, . . . , Sn;P 1, . . . , Pn;T 1, . . . , Tn;λ1, . . . , λn〉,
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where each P i is a Polish space of i-payoff functions, each T i is a Polish space, and each λi : T i →

M(S−i × P−i × T−i) is continuous.

Note that an (S1, P 1, . . . , Sn, Pn)-based type structure induces hierarchies of beliefs about the

structure of the game (the payoff functions) as well as the strategies played in the game. To see

this, extend the definition of the sets Y im in the main text by setting Y i1 = S−i × P−i and defining

inductively Y im+1 = Y im ×
∏
j �=iM(Y jm). Define continuous maps ρim : S

−i × P−i × T−i → Y im by

ρi1
(
s−i, π−i, t−i

)
=

(
s−i, π−i

)
,

ρim+1
(
s−i, π−i, t−i

)
= (ρim

(
s−i, π−i, t−i

)
, (δjm

(
tj
)
)j �=i),

where δjm = ρj
m
◦ λj .1 Let δi : T i →

∏∞
m=1M

(
Y im
)
where δi

(
ti
)
=
(
δi1
(
ti
)
, δi2

(
ti
)
, . . .

)
. Also, let

δ−i : T−i →
∏
j �=i

∏∞
m=1M(Y jm) be the product of the maps δj for each j 	= i.

Next, we extend the definitions of CI and SUFF. Fix a type structure Φ. For each player

i = 1, . . . , n and each j 	= i, define random variables −→s ji and
−→
t
j
i on S

−i×P−i×T−i by −→s ji = projSj

and
−→
t
j
i = projT j . Let

−→
t i be the random variable on S−i×P−i×T−i given by

−→
t i = projT−i . Define

η
j
i : S

−i×P−i×T−i → P j×
∏∞
m=1M(Y jm) and η

−i : S−i×P−i×T−i → P−i×
∏
j �=i

∏∞
m=1M(Y jm)

by

η
j
i

(
s−i, π−i, t−i

)
= (πj , (δj ◦

−→
t
j
i )(s

−i, π−i, t−i)),

η−i
(
s−i, π−i, t−i

)
= (π−i, (δ−i ◦

−→
t i)(s

−i, π−i, t−i)).

Note ηji and η
−i are products of random variables and so are random variables themselves.

Definition J2 The random variables −→s 1i , . . . ,
−→s i−1i ,−→s i+1i , . . . ,−→s ni are λi(ti)-conditionally inde-

pendent given the random variable η−i if, for all j 	= i and Ej ∈ σ(−→s ji ),

λi
(
ti
)
(
⋂
j �=iE

j ||σ(η−i)) =
∏
j �=i λ

i
(
ti
) (
Ej ||σ(η−i)

)
a.s.

Say the type ti satisfies conditional independence (CI) if −→s 1i , . . . ,
−→s i−1i ,−→s i+1i , . . . ,−→s ni are λi(ti)-

conditionally independent given η−i.

Definition J3 The random variable ηji is λi(ti)-sufficient for the random variable −→s ji if, for

each j 	= i and Ej ∈ σ(−→s ji ),

λi
(
ti
) (
Ej ||σ(η−i)

)
= λi

(
ti
)
(Ej ||σ(ηji )) a.s.

Say the type ti satisfies sufficiency (SUFF) if, for each j 	= i, ηji is λi(ti)-sufficient for −→s ji .

The next step is to extend the definition of RCBR.

1The proof that the maps ρi
m

are continuous parallels the proof of Proposition B1.
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Definition J4 Say
(
si, πi, ti

)
∈ Si × P i × T i is rational if

∑
s−i∈S−i π

i
(
si, s−i

)
margS−i λ

i
(
ti
) (
s−i
)
≥
∑
s−i∈S−i π

i
(
ri, s−i

)
margS−i λ

i
(
ti
) (
s−i
)

for every ri ∈ Si. Let Ri1 be the set of all rational triples
(
si, πi, ti

)
.

Note that, in contrast with Definition 10.1 in the main text, rationality is now a property of a

strategy-payoff function-type triple, not just a strategy-type pair.

Definition J5 Say E ⊆ S−i×P−i×T−i is believed under λi
(
ti
)

if E is Borel and λi
(
ti
)
(E) = 1.

Define Bi (E) as before, and for m > 1, define Rim inductively by

Rim+1 = Rim ∩
[
Si × P i ×Bi

(
R−im

)]
.

Definition J6 If
(
s1, π1, t1, . . . , sn, πn, tn

)
∈ Rm+1, say there is rationality and mth-order be-

lief of rationality (RmBR) at this state. If
(
s1, π1, t1, . . . , sn, πn, tn

)
∈
⋂∞
m=1Rm, say there is

rationality and common belief of rationality (RCBR) at this state.

Finally, we want to formalize common (1− ε)-belief of the game. For each i, fix Ei ⊆ Si×P i×T i.

Let

Bi(E−i; ε) = {ti ∈ T i : λi
(
ti
)
(E−i) ≥ 1− ε}.

Fix some ε > 0. Set Ei1 = Ei, and for m ≥ 1 define inductively

Eim+1 = Eim ∩ [S
i × P i ×Bi(E−im ; ε)].

Definition J7 (Monderer-Samet [2, 1989]) If
(
s1, π1, t1, . . . , sn, πn, tn

)
∈
⋂∞
m=1Em, say that

E holds and there is common (1− ε)-belief of E at this state.

We can now state and prove our first result on payoff uncertainty.

Proposition J1 Fix ε > 0. Fix also a game G =
〈
S1, . . . , Sn;π1, . . . , πn

〉
, and a BRS

∏n
i=1Q

i

of G. Then there is a type structure 〈S1, . . . , Sn;P 1, . . . , Pn;T 1, . . . , Tn;λ1, . . . , λn〉 such that for

each profile
(
s1, . . . , sn

)
∈
∏n
i=1Q

i, there is a state
(
s1, π1, t1, . . . , sn, πn, tn

)
where:

(i) RCBR holds;

(ii) E holds and there is common (1− ε)-belief of E, where Ei = Si × {πi} × T i;

(iii) the types t1, . . . , tn satisfy CI and SUFF.

In words, Proposition J1 says that any strategy profile in a BRS of the game G—in particular

then, any correlated rationalizable profile in G—can be played under the conditions of CI, SUFF,
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and RCBR, when G is indeed the game and there is common (1− ε)-belief of G. In this sense, we

rescue the converse direction (part (ii)) of Proposition 10.1, with the help of payoff uncertainty.

To prove Proposition J1, we start by constructing, for each si ∈ Qi, a total of
∣∣Q−i

∣∣ i-payoff
functions as follows. For each i, begin with an injective map s−i �−→ a

(
s−i
)
> 0 such that, for

each si ∈ Qi, there is some r−i ∈ Q−i with πi
(
si, r−i

)
	= a

(
r−i
)
. Let γi

(
si, s−i

)
: S → R be an

i-payoff function where

γi
(
si, s−i

) (
ri, r−i

)
=

{
a
(
s−i
)

if ri = si,

0 otherwise.

Note, if si 	= ri then, for all s−i, r−i ∈ Q−i, γi
(
si, s−i

)
	= γi

(
ri, r−i

)
. By construction, this implies

γi
(
si, s−i

)
	= γi

(
ri, r−i

)
for any

(
si, s−i

)
	=
(
ri, r−i

)
.

Fix s−i ∈ S−i. Write Γ
(
si; s−i

)
for the profile of payoff functions where

Γ
(
si; s−i

)
=

(
γ1
(
s1, s−i−1, si

)
, . . . , γi−1

(
si−1, s−i−(i−1), si

)
, γi+1

(
si+1, s−i−(i+1), si

)
, . . . , γn

(
sn, s−i−n, si

))
.

Note, for any s−i 	= r−i and any j 	= i, γj
(
sj , s−i−j , si

)
	= γj

(
rj , r−i−j , si

)
. So, whenever s−i 	= r−i,

Γ
(
si; s−i

)
	= Γ

(
si; r−i

)
.

We now build a type structure Φ as follows. Set T i = Qi. For each i, let P i be the set of all

γi
(
si, s−i

)
plus πi. Then each P i is finite with cardinality

∣∣Qi
∣∣×
∣∣Q−i

∣∣+1. Set T i = Qi. Define

λi : T i →M
(
S−i × P−i × T−i

)
so that, for each si ∈ T i = Qi,

λi
(
si
) (
s−i, π̃−i, t−i

)
=






(1− ε)× µ
(
si
) (
s−i
)

if π̃−i = π−i and t−i = s−i,

ε× µ
(
si
) (
s−i
)

if π̃−i = Γ
(
si; s−i

)
and t−i = s−i,

0 otherwise.

where µ
(
si
)
∈ M

(
S−i

)
, with µ

(
si
) (
Q−i

)
= 1, and si is optimal under µ

(
si
)
under the payoff

function πi.

We show that each of the properties of the theorem is satisfied.

Proof of RCBR. We show by induction that for all m, the following holds: For all i and all
(
si, s−i

)
∈ S,

(
si, πi, si

)
,
(
si, γi

(
si, s−i

)
, si
)
∈ Rim.

Begin withm = 1. We have that margS−i λ
i
(
si
)
= µ

(
si
)
, so that

(
si, πi, si

)
∈ Ri1. By construc-

tion, si is strongly dominant under the i-payoff function γi
(
si, s−i

)
, so that

(
si, γi

(
si, s−i

)
, si
)
∈ Ri1.

Next assume the result holds for m ≥ 1. It is then immediate from the definition of λi
(
si
)
and

the induction hypothesis that λi
(
si
) (
R−im

)
= 1, as required.

Proof of Common (1 − ε) Belief. We show by induction that Eim = Si ×
{
πi
}
× T i and

Bi
(
E−im ; ε

)
= T i for all m. For m = 1, this is immediate from the construction. Assume the result
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holds for m. Then

Eim+1 = Eim ∩ [S
i × P i ×Bi(E−im ; ε)]

= Eim ∩ [S
i × P i × T i]

= Si ×
{
πi
}
× T i,

where the second and third lines follow from the induction hypothesis. Next note that for each

si ∈ T i,

λi
(
si
) (
E−im

)
= λi

(
si
) (
S−i ×

{
π−i

}
× T−i

)

= 1− ε,

where the first line follows from the induction hypothesis and the second line follows from the

definition of λi
(
si
)
.

Note the following: In the type structure we build, for each i and each si, ri ∈ T i, if si 	= ri then

δi
(
si
)
	= δi

(
ri
)
. To see this, suppose si, ri ∈ T i with si 	= ri. Fix s−i with µ

(
si
) (
s−i
)
> 0. Then

δi1
(
si
) (
s−i,Γ

(
si; s−i

))
= ε× µ

(
si
) (
s−i
)
> 0,

But Γ
(
ri; s−i

)
	= Γ

(
si; s−i

)
, so that

δi1
(
ri
) (
s−i,Γ

(
si; s−i

))
= 0,

and so certainly δi
(
ri
)
	= δi

(
si
)
.

Now for the proofs of CI and SUFF. For a given
(
π̃j , tj

)
, write

[
π̃j , tj

]
= S−i ×

{
π̃j
}
× P−i−j ×

{
uj : δj

(
uj
)
= δj

(
tj
)}
× T−i−j .

Define
[
π̃−i, t−i

]
similarly. Note,

[
π̃j , tj

]
= (ηji )

−1(π̃j , (δj ◦
−→
t
j
i )(s

−i, π̃−i, t−i)) and
[
π̃−i, t−i

]
=

(η−i)−1(π̃−i, (δ−i ◦
−→
t i)(s−i, π̃

−i, t−i)).

Next, fix some π̃−i =
(
π̃1, . . . , π̃i−1, π̃i+1, . . . , π̃n

)
and t−i =

(
t1, . . . , ti−1, ti+1, . . . , tn

)
with

λi
(
si
)
(
[
π̃−i, t−i

]
) > 0. Note, by construction, this implies that π̃−i is equal to π−i or Γ

(
si; s−i

)
.

Proof of CI. By definition

λi
(
si
)
(
⋂

k �=i

[
sk
]
|
[
π̃−i, t−i

]
) =

λi
(
si
)
(
⋂
k �=i

[
sk
]
∩
[
π̃−i, t−i

]
)

λi (si) (
[
π̃−i, t−i

]
)

, (J1)

and, for any j 	= i,

λi
(
si
)
(
[
sj
]
|
[
π̃−i, t−i

]
) =

λi
(
si
)
(
[
sj
]
∩
[
π̃−i, t−i

]
)

λi (si) (
[
π̃−i, t−i

]
)

. (J2)
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First take the case that t−i = s−i. Then

λi
(
si
)
(
⋂

k �=i

[
sk
]
∩
[
π̃−i, t−i

]
) = λi

(
si
) ({

s−i
}
×
{
π̃−i

}
×
{
u−i : δ−i

(
u−i

)
= δ−i

(
s−i
)})

= λi
(
si
) (
s−i, π̃−i, s−i

)
(J3)

where the second line uses the fact (shown above) that δ−i
(
u−i

)
	= δ−i

(
s−i
)
if u−i 	= s−i. Also,

λi
(
si
)
(
[
π̃−i, t−i

]
) =

∑
r−i λ

i
(
si
) ({

r−i
}
×
{
π̃−i

}
×
{
u−i : δ−i

(
u−i

)
= δ−i

(
s−i
)})

=
∑
r−i λ

i
(
si
) (
r−i, π̃−i, s−i

)

= λi
(
si
)
(s−i, π̃−i, s−i), (J4)

where the second equality again uses the fact that δ−i
(
u−i

)
	= δ−i

(
s−i
)
if u−i 	= s−i, and the third

inequality uses the fact that λi
(
si
) (
r−i, π̃−i, s−i

)
= 0 when r−i 	= s−i. Repeating this argument,

λi
(
si
)
(
[
sj
]
∩
[
π̃−i, t−i

]
) = λi

(
si
) (
s−i, π̃−i, s−i

)
. (J5)

Putting J1-J5 together yields

λi
(
si
)
(
⋂

k �=i

[
sk
]
|
[
π̃−i, t−i

]
) = 1 =

∏
j �=i

λi
(
si
)
(
[
sj
]
|
[
π̃−i, t−i

]
),

so CI holds.

It remains to consider the case t−i 	= s−i. Now λi
(
si
) (
s−i, π̃−i, t−i

)
= 0. Using this and the

fact that u−i 	= t−i implies δ−i
(
u−i

)
	= δ−i

(
t−i
)
(shown above), we have that

λi
(
si
)
(
⋂

k �=i

[
sk
]
∩
[
π̃−i, t−i

]
) = λi

(
si
) (
s−i, π̃−i, t−i

)
= 0. (J6)

Moreover, sj 	= tj for some j 	= i, and so we also have

λi
(
si
)
(
[
sj
]
∩
[
π̃−i, t−i

]
) = 0. (J7)

Putting J1, J6, J2, and J7 together yields

λi
(
si
)
(
⋂

j �=i

[
sj
]
|
[
π̃−i, t−i

]
) = 0 =

∏
j �=i

λi
(
si
)
(
[
sj
]
|
[
π̃−i, t−i

]
),

so CI again holds.

Proof of SUFF. Fix some sj ∈ Sj for j 	= i. Also, take π̃j be the jth coordinate of π̃−i. By

definition

λi
(
si
)
(
[
sj
]
|
[
π̃j , tj

]
) =

λi
(
si
)
(
[
sj
]
∩
[
π̃j , tj

]
)

λi (si) (
[
π̃j , tj

]
)

, (J8)
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and

λi
(
si
)
(
[
sj
]
|
[
π̃−i, t−i

]
) =

λi
(
si
)
(
[
sj
]
∩
[
π̃−i, t−i

]
)

λi (si) (
[
π̃−i, t−i

]
)

. (J9)

First suppose tj = sj . Recall

λi
(
si
) ({

r−i
}
×
{
π̃−i

}
×
{
q−i : δ−i

(
q−i
)
= δ−i

(
u−i

)})
= 0

whenever r−i 	= u−i. So, letting F =
{
sj
}
×Q−i−j ,

λi
(
si
)
(
[
sj
]
∩
[
π̃j , tj

]
) =

∑
r−i∈F

λi
(
si
)
(r−i, π̃−i, r−i). (J10)

Likewise

λi
(
si
)
(
[
π̃j , tj

]
) =

∑
r−i∈F

λi
(
si
)
(r−i, π̃−i, r−i). (J11)

Similarly,

λi
(
si
)
(
[
sj
]
∩
[
π̃−i, t−i

]
) = λi

(
si
)
(t−i, π̃−i, t−i) (J12)

and

λi
(
si
)
(
[
π̃−i

]
∩
[
t−i
]
) = λi

(
si
)
(t−i, π̃−i, t−i). (J13)

Putting J8-J13 together, we get

λi
(
si
)
(
[
sj
]
|
[
π̃j , tj

]
) = 1 = λi

(
si
)
(
[
sj
]
|
[
π̃−i, t−i

]
),

so SUFF holds.

Next suppose tj 	= sj . Then

λi
(
si
)
(
[
sj
]
∩
[
π̃j , tj

]
) = λi

(
si
)
(
[
sj
]
∩
[
π̃−i, t−i

]
) = 0.

Together with J8 and J9, it follows

λi
(
si
)
(
[
sj
]
|
[
π̃j , tj

]
) = 0 = λi

(
si
)
(
[
sj
]
|
[
π̃−i, t−i

]
),

so SUFF again holds.

Next, we show that with payoff uncertainty, we lose the analog to the forward direction (part (i))

of Proposition 10.1. For fixed ε > 0, consider the condition of common (1− ε)-belief of an event.

We can find a game G and an associated type structure so that the following hold: (i) each type

satisfies CI and SUFF; (ii) at any state at which the game is indeed G, there is common (1− ε)-

belief of G; (iii) but at any state at which there is RCBR, the strategies played are not correlated

rationalizable in G. So, correlated rationalizability does not characterize these conditions. The

example below shows how this can happen.
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Example J1 We fix some ε > 0, and consider the two-player game G in Figure J1. Write πa, πb

for Ann’s and Bob’s payoff functions in G. We also consider the alternative payoff function π̃b for

Bob given in Figure J2.

L R

U 1, 1 0, 0

D 0, 1
1

, 0
εεεε

Figure J1

L R

U 1 0

D 0 1

Figure J2

Construct a type structure as follows. Let P a = {πa}, P b =
{
πb, π̃b

}
, T a = {ta}, T b =

{
tb
}
,

and

λa(ta)(L, πb, tb) = 1− ε,

λa(ta)(R, π̃b, tb) = ε,

λb(tb)(D,πa, ta) = 1.

We first show that the game G holds and is common (1− ε)-belief at a state
(
·, πa, ta, ·, πb, tb

)
.

Letting Ea1 = Sa × {πa} × T a and Eb1 = Sb ×
{
πb
}
× T b, it suffices to show that Eam = Ea1 ,

Ebm = Eb1, B
a(Ebm, ε) = T a, and Bb(Eam, ε) = T b for all m. For m = 1, we have only to note that

λa(ta)(Eb1) = 1− ε and λb(tb)(Ea1 ) = 1. Assume the statement is true for m. Then

Eam+1 = Eam ∩ [S
a × Pa ×Ba(Ebm; ε)] = Eam ∩ [S

a × Pa × T a] = Eam,

and likewise for b, so that

λa(ta)(Ebm+1) = λa(ta)(Ebm) = 1− ε,

λb(tb)(Eam+1) = λb(tb)(Eam) = 1,

as required.

Since G is a two-player game, each type certainly satisfies CI and SUFF. Finally, we calculate:

Ra1 = {(D,πa, ta)} ,

Rb1 =
{(
L, πb, tb

)
,
(
R, π̃b, tb

)}
,

from which we get by induction that Ram = Ra1 and Rbm = Rb1 for all m.

Summing up, each type satisfies CI and SUFF. At the state
(
D,πa, ta, L, πb, tb

)
, the game G holds

and is common (1− ε)-belief, and RCBR holds. But the correlated rationalizable set of strategies

for G is the singleton {(U,L)}.
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Some comments on the example: First, note that the correlated rationalizable profiles (of the

original game G) are even disjoint from the profiles played under our conditions. Certainly, corre-

lated rationalizability does not characterize these conditions.

Also, note that we first fixed ε, and defined common (1− ε)-belief relative to this ε. Then,

second, we found a game to show that our conditions need not yield a correlated rationalizable

profile. This order is important. Epistemic conditions should be stated independent of a particular

game.2 If the conditions are allowed to depend on the game in question, then the condition could

simply be that a strategy profile we are interested in is chosen. This wouldn’t be a useful epistemic

analysis.

Of course, one reaction is that, given the payoffs in the game of Figure J1, common (1− ε)-belief

of this game is a ‘significant’ amount of uncertainty. But this situation must arise if we fix an

epistemic condition to hold over all games, as we have argued we must. The only way to avoid

this would be to take ε to be an infinitesimal (and maintain real-valued payoffs). This might be an

interesting avenue. To explore it would require reformulating all the apparatus of the paper—type

structures etc.—in terms of nonstandard probabilities.

Appendix K Dummy Players

Here we add a dummy player, i.e., a player whose choice of strategy does not affect his payoffs or the

payoffs of the other players. In the game with a dummy player, correlated rationalizability gives the

same strategies (for non-dummy players) as does correlated rationalizability in the original game.

We also show that in any game with a dummy player, correlated rationalizability characterizes RCBR

when the additional variables are the hierarchies of beliefs (about the strategies played). Note, a

dummy player differs from a move by Nature, in that a dummy player has types.

The definitions are as in the main text. Begin with a given game G. We first extend the game

to include a dummy player:

Definition K1 The game G is a dummy extension of G =
〈
S1, . . . , Sn;π1, . . . , πn

〉
if G is an

(n+ 1)-player strategic-form game G =
〈
S1, . . . , Sn, Sn+1;π1, . . . , πn, πn+1

〉
where:

1. for i = 1, . . . , n and all
(
s1, . . . , sn, sn+1

)
∈
∏n+1
j=1 S

j,

πi
(
s1, . . . , sn, sn+1

)
= πi

(
s1, . . . , sn

)
;

2. for all
(
s1, . . . , sn, sn+1

)
,
(
r1, . . . , rn, rn+1

)
∈
∏n+1
j=1 S

j,

πn+1
(
s1, . . . , sn, sn+1

)
= πn+1

(
r1, . . . , rn, rn+1

)
.

2The same order of quantification (in a non-epistemic setting) is chosen in Weibull [3, 1992].

9



(This says that the game is decomposable into the player set {1, . . . , n} and the player n + 1.

Cf. Mertens [1, 1989, p.577].) When given a game G and a dummy extension G, we will take

S =
∏n
i=1 S

i, S−i =
∏
j �=i:j=1,...,n S

j , etc. (That is, define the sets as they would be in G.) Begin

by relating the correlated rationalizable strategies in G to the correlated rationalizable strategies in

an extension G.

Lemma K1 Fix a game G and a dummy extension G of G. If S1M × · · · × SnM × Sn+1M are the

correlated rationalizable strategies in G, then S1M×· · ·×S
n
M are the correlated rationalizable strategies

in G.

Proof. Write Q = Q1 × · · · × Qn for the correlated rationalizable strategies in G. We will show

that Q = SM . Note, in any extended game, Sn+1M = Sn+1. We will make use of this fact below.

We first show that Q× Sn+1 is a BRS in G, from which it follows that Q× Sn+1 ⊆ SM × Sn+1.

Fix i = 1, . . . , n and some si ∈ Qi. Since the correlated rationalizable set is a BRS, there is

a µ ∈ M
(
S−i

)
with µ

(
Q−i

)
= 1 and πi

(
si, µ

)
≥ πi

(
ri, µ

)
for all ri ∈ Si. Pick some ν ∈

M
(
S−i × Sn+1

)
so that margS−i ν = µ. By definition, ν

(
Q−i × Sn+1

)
= 1. Also, for any ri ∈ Si,

πi
(
ri, ν

)
= πi

(
ri, µ

)
. With this, πi

(
si, ν

)
≥ πi

(
ri, ν

)
for all ri ∈ Si. Next fix sn+1 ∈ Sn+1 and

note that it is optimal under any measure on Q. This establishes that Q× Sn+1 is a BRS in G.

Next, we will show that SM is a BRS in G, from which it follows that SM ⊆ Q. Fix i = 1, . . . , n

and some si ∈ SiM . Then there is a ν ∈M
(
S−i × Sn+1

)
with ν

(
S−iM × Sn+1

)
= 1 and πi

(
si, ν

)
≥

πi
(
ri, ν

)
for all ri ∈ Si. Let µ = margS−i ν. Then µ

(
S−iM

)
= 1. Moreover, for any ri ∈ Si,

πi
(
ri, ν

)
= πi

(
ri, µ

)
. From this, πi

(
si, µ

)
≥ πi

(
ri, µ

)
for all ri ∈ Si, establishing the result.

Now we show that in a game with dummy players, the correlated rationalizable strategies char-

acterize CI, SUFF, and RCBR. (Here, CI and SUFF are Definitions 9.1-9.2 in the main text.)

Proposition K1 Fix a game G and a dummy extension G of G.

(i) Fix a type structure for G and a state
(
s1, t1, . . . , sn+1, tn+1

)
. If each type ti satisfies CI and

SUFF, and RCBR holds, then the profile
(
s1, . . . , sn+1

)
is correlated rationalizable in G.

(ii) There is a type structure for G such that, for each correlated rationalizable strategy profile
(
s1, . . . , sn+1

)
in G, there is a state

(
s1, t1, . . . , sn+1, tn+1

)
at which at which each type ti

satisfies CI and SUFF, and RCBR holds.

Part (i) is immediate from Proposition 10.1.

For part (ii): First note that if |SM | = 1, the result is trivial. (Follow the proof of Proposition

10.1(ii) in the main text and then observe that the type structure trivially satisfies CI and SUFF.)

So, assume |SM | ≥ 2.

Let S1M ×· · ·×S
n+1
M be the correlated rationalizable strategies in G, and note that Sn+1M = Sn+1.

For i = 1, . . . , n, take T i = SiM . Take Tn+1 so that
∣∣Tn+1

∣∣ = max
{∣∣SiM

∣∣ : i = 1, . . . , n
}
×
∣∣Sn+1

∣∣.
Then, for each i = 1, . . . , n, we can find an injective map gi : SiM × Sn+1 → Tn+1.
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For each i = 1, . . . , n and each si ∈ T i = SiM , define the map si → µ
(
si
)
∈ M

(
S−i × Sn+1

)

so that µ
(
si
) (
S−iM × Sn+1M

)
= 1 and si is optimal under µ

(
si
)
. Construct λi so that, for each

si ∈ T i = SiM ,

λi
(
si
) (
s−i, sn+1, t−i, tn+1

)
=

{
µ
(
si
) (
s−i, sn+1

)
if s−i = t−i and gi

(
si, sn+1

)
= tn+1,

0 otherwise.

For each tn+1 ∈ Tn+1, define an injective map tn+1 �→ µ
(
tn+1

)
∈M

(
Sn+1

)
with µ

(
tn+1

)
(SM) =

1. This can be done since |SM | ≥ 2. Then define λn+1 so that

λn+1
(
tn+1

)
(s, t) =

{
µ
(
tn+1

)
(s) if s = t,

0 otherwise.

We now turn to showing the properties.

Proof of RCBR. We will show that S1M × · · · × Sn+1M ⊆ projS Rm, for all m. For this, it suffices

to show that, for all m: (im) for i = 1, . . . , n,
{(
si, si

)
∈ Si × T i : si ∈ SiM

}
⊆ Rim; and (iim)

Sn+1 × Tn+1 = Rn+1m .

Begin with m = 1. For i = 1, . . . , n, if si ∈ SiM then
(
si, si

)
∈ Ri1 so that (i1) holds. Part (ii1)

is immediate from the construction of an extended game. Now assume (im) and (iim) hold. Fix

i = 1, . . . , n and si ∈ SiM . Then

λi
(
si
)
({
(
s−i, s−i

)
: s−i ∈ S−iM } × S

n+1 × Tn+1) = 1,

establishing that
(
si, si

)
∈ Rim+1 and (i(m+ 1)). For (ii(m+ 1)), we only need show that, for any

tn+1 ∈ Tn+1, tn+1 ∈ Bn+1(Rm). But

λn+1
(
sn+1

) ((
s1, s1, . . . , sn, sn

)
: si ∈ SiM}

)
= 1,

from which this is immediate.

Note the following: For each i, if ti 	= ui then δi
(
ti
)
	= δi

(
ui
)
. To show this, begin with player

n+ 1 and fix types tn+1, un+1 ∈ Tn+1. By construction, margS λ
n+1

(
tn+1

)
	= margS λ

n+1
(
un+1

)
,

so that δn+11

(
tn+1

)
	= δn+11

(
un+1

)
, as required.

Now turn to some player i = 1, . . . , n and fix ti, ui ∈ T i with ti 	= ui. Also, fix a profile
(
s−i, sn+1, t−i, tn+1

)
∈ Suppλi

(
ti
)
. Note, gi

(
ti, sn+1

)
= tn+1. So, for any rn+1 ∈ Sn+1\

{
sn+1

}
,

gi
(
ui, rn+1

)
	= tn+1. By construction,

λi
(
ui
) (
S−i × Sn+1 × T−i ×

{
un+1 : δn+11

(
un+1

)
= δn+11

(
tn+1

)})
= 0.
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Next, fix E = S−i × Sn+1 ×
∏
j �=i;j=1,..,nM

(
S−j

)
×
{
δn+11

(
tn+1

)}
. Then

ρi
2

(
λi
(
ti
))
(E) = λi

(
ti
)
(
(
ρi2
)−1

(E))

= λi
(
ti
) (
S−i × Sn+1 × T−i ×

{
vn+1 : δn+11

(
vn+1

)
= δn+11

(
tn+1

)})

> 0

= λi
(
ui
) (
S−i × Sn+1 × T−i ×

{
vn+1 : δn+11

(
vn+1

)
= δn+11

(
tn+1

)})

= λi
(
ui
)
(
(
ρi2
)−1

(E)) = ρi
2

(
λi
(
ui
))
(E) .

So, ρi
2

(
λi
(
ti
))
	= ρi

2

(
λi
(
ui
))
, i.e. δi2

(
ti
)
	= δi2

(
ui
)
.

Proof of CI. Fix a player i and some si ∈ T i = SiM . Let
(
s−i, sn+1

)
=
(
s1, . . . , si−1, si+1, . . . , sn+1

)

and
(
t−i, tn+1

)
=
(
t1, . . . , ti−1, ti+1, . . . , tn+1

)
. Suppose λi

(
si
)
(
⋂
j �=i

[
tj
]
∩
[
tn+1

]
) > 0. If either

tj 	= sj , for some j = 1, . . . , n with j 	= i, or gi
(
si, sn+1

)
	= tn+1, then si trivially satisfies CI and

SUFF. So suppose that, for all j = 1, . . . , n with j 	= i, tj = sj and gi
(
si, sn+1

)
= tn+1. Then

λi
(
si
) (⋂

j �=i

[
sj
]
∩
[
sn+1

]
|
⋂
j �=i

[
tj
]
∩
[
tn+1

])
=
λi
(
si
)
(
⋂
j �=i

[
tj
]
∩
[
tn+1

]
)

λi (si) (
⋂
j �=i [t

j ] ∩ [tn+1])
= 1.

Also, for each j 	= i, j = 1, . . . , n, n+ 1,

λi
(
si
) ([

sj
]
|
⋂
j �=i

[
tj
]
∩
[
tn+1

])
=
λi
(
si
)
(
⋂
j �=i

[
tj
]
∩
[
tn+1

]
)

λi (si) (
⋂
j �=i [t

j ] ∩ [tn+1])
= 1.

From this it follows that si satisfies CI.

To show type tn+1 ∈ Tn+1 satisfies CI note that, for each i = 1, . . . , n, δi
(
ti
)
	= δi

(
ui
)
whenever

ti 	= ui. (This was shown above.) So, CI follows from Proposition H1.

Proof of SUFF. Fix i and some si ∈ T i = SiM . Let
(
s−i, sn+1

)
=
(
s1, . . . , si−1, si+1, . . . , sn+1

)

and
(
t−i, tn+1

)
=
(
t1, . . . , ti−1, ti+1, . . . , tn+1

)
. Suppose λi

(
si
)
(
⋂
j �=i

[
tj
]
∩
[
tn+1

]
) > 0. If either

tj 	= sj , for some j = 1, . . . , n with j 	= i, or gi
(
si, sn+1

)
= tn+1, then si trivially satisfies CI and

SUFF. So suppose that, for all j = 1, . . . , n with j 	= i, tj = sj and gi
(
si, sn+1

)
= tn+1.

Fix k = 1, . . . , n and note that

λi
(
si
) ([

sk
]
|
[
tk
])
=
λi
(
si
) ([

tk
])

λi (si) ([tk])
= 1.

Moreover,

λi
(
si
) ([

sk
]
|
⋂
j �=i

[
tj
]
∩
[
tn+1

])
=
λi
(
si
) (⋂

j �=i

[
tj
]
∩
[
tn+1

])

λi (si)
(⋂

j �=i [t
j ] ∩ [tn+1]

) = 1.

So λi
(
si
) ([

sk
]
|
⋂
j �=i

[
tj
]
∩
[
tn+1

])
= λi

(
si
) ([

sk
]
|
[
tk
])

and si satisfies SUFF.

12



To show type tn+1 ∈ Tn+1 satisfies SUFF, again note that, for each i = 1, . . . , n, δi
(
ti
)
	= δi

(
ui
)

whenever ti 	= ui. So, SUFF follows from Proposition H1.
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