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Abstract

Evidence shows that when engaged in game-playing tasks, individuals think about what
other individuals are thinking. Presumably, though, cognitive limits prevent individuals
from entertaining indefinite levels of thinking about what other players are thinking about
what other players are thinking, etc.. Drawing on neural evidence, we propose a procedure
by which a player builds such levels of thinking. The number of possibilities that a player
must consider at each level m in this procedure grows exponentially with m. We argue that
this feature may help explain why a cognitive bound has been found in game-theory studies
to come into effect at a small finite number of levels of thinking about thinking.

These particular uncertainties — as to the other player’s beliefs about oneself — are
almost universal, and it would constrict the application of a game theory fatally to
rule them out.
– Daniel Ellsberg [10, 1959]

1 Introduction

When one first hears about game theory, a basic question comes quickly to mind: How does a
player Ann in a game think not just about what moves another player Bob might make, but
also about what Bob might be thinking about her own moves, and, perhaps, about still higher
levels of thinking about thinking? Yet the historical development of game theory sidestepped
this issue. In minimax theory (von Neumann [32, 1928], von Neumann and Morgenstern [33,
1944]), players adopt a worst-case rather than predictive view of what other players do, and
choose accordingly. In equilibrium theory (Nash [25, 1951]), each player is assumed to have
access to the actual strategies chosen by the other players and to choose a strategy accordingly.
Players do not have to operate on the basis of guesses about other players. A more recent
development, epistemic game theory, is different in making “thinking about what another
player is thinking” basic to the analysis of games; we will come back to this approach later.

Outside game theory, iterated thinking has been extensively studied in cognitive psychol-
ogy and cognitive neuroscience. Here, the term used is Theory of Mind (ToM), defined

∗Our thanks to Samson Abramsky, Jessy Hsieh, Natalya Vinokurova, and Jiemai Wu for valuable comments,
to Elliot Lipnowksi for a very important suggestion, and to the NYU Stern School of Business and NYU Shanghai
for financial support.
†Stern School of Business, Polytechnic School of Engineering, NYU Shanghai, New York University, New York,

NY 10012, U.S.A., adam.brandenburger@stern.nyu.edu, adambrandenburger.com
‡Behavioral & Social Neuroscience Program, California Institute of Technology, Pasadena, CA 91125, U.S.A.,

xli2@caltech.edu



as the ability to think about another person’s beliefs, wants, and intentions (Singer and Tusche
[28, 2014, p.514]), and it is well accepted that people possess and use ToM in many situations.

Of particular significance for game theory is evidence from behavioral and brain-imaging
studies showing that regions of the brain active in ToM processing are also activated when
people play a game with a human (but not with a computer) counterpart (McCabe et al. [22,
2001], Gallagher and Frith [14, 2003]). Other important evidence comes from Sally and Hill [27,
2006], who examined how children, some developing normally and some with autistic spectrum
disorder (ASD), played a number of games. (In pioneering work, Baron-Cohen, Leslie, and Frith
[3, 1985] showed that children with ASD perform considerably less well on ToM tasks.) In the
repeated Prisoner’s Dilemma, Sally and Hill found that better performance on ToM tasks was
correlated with higher levels of cooperation. In the Ultimatum Game, ASD proposers offered the
responder less than other proposers did, as compared with the Dictator Game, where the two
groups made the same offers. To the extent that behavior involving more cooperation (Prisoner’s
Dilemma) or more generosity (Ultimatum Game) is more effective for a player, these findings
connect ToM ability to strategic ability.

There appear to be good empirical — not just intuitive — grounds for making the examination
of “thinking about what another player is thinking” an important part of game theory.

2 Theory-of-Mind Ability

A person’s ToM ability is usually defined via a task where the person hears a short story
describing a social situation and is then asked questions about the story (Kinderman, Dunbar,
and Bentall [19, 1998], Stiller and Dunbar [30, 2007]). The questions differ in terms of the
number of levels of “Ann thinks Bob thinks Charlie thinks . . . ” that they contain (Ann, Bob,
and Charlie are characters in the story). The maximum number of such levels that a question
can contain and still be answered correctly by the person gives that person’s ToM ability.

There is considerable empirical evidence that people’s ToM abilities are limited to a small
finite number of levels. Employing a narrative approach, Stiller and Dunbar [30, 2007] found
that the modal level at which subjects failed ToM questions was level 5. (The subjects were
normal adults.1) Two recent papers in experimental game theory found iterated thinking
up to level 3 and level 4, respectively. Arad and Rubinstein [1, 2012] introduced a game (they
call it the “11-20 game”) which they designed to prompt iterated thinking and to permit robust
identification of levels. They found that a model allowing up to level-3 thinking (together with
some noise) fitted their experimental data best. Kneeland [20, 2015] introduced a novel experi-
mental design (using “ring games”) that allows one to identify levels of thinking in a whole family
of games, while making much weaker assumptions on behavior and beliefs than in the previous
experimental games literature. In her experiments, Kneeland found that 6 percent of subjects
were level-0 (i.e., made dominated choices), 23 percent were level-1, 27 percent were level-2, 22
percent were level-3, and 22 percent were level-4.

The findings in Kneeland [20, 2015], in particular, point to a somewhat higher degree of
cognitive capability concerning thinking about thinking than was typically found in the earlier
games literature; see Nagel [24, 1995], Stahl and Wilson [29, 1995], Costa-Gomes, Crawford, and
Broseta [8, 2001], Camerer, Ho, and Chong [7, 2004], and others. This earlier — and pioneering
— literature employed more tightly specified models (the “level-k” and “cognitive hierarchy”
models) in order to achieve identification, which could mean that higher-level thinkers are under-
identified.

1Women achieved one more level (an average of 5.53 levels) than did men (an average of 4.41 levels), a difference
which was significant.
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The broad agreement on number of levels across Stiller and Dunbar [30, 2007], Arad and
Rubinstein [1, 2012], and Kneeland [20, 2015] is encouraging. We do note, though, that some
care is needed in comparing across narrative-based and game-based studies. In the first type
of study, a statement of the exact form “Ann thinks Bob wants to play Left” is not employed,
but similar statements are used, and they are coded as level 2. In game-based studies, if Ann
is observed to choose a strategy that is best for her when Bob chooses Left, then she would be
coded as at least a level-1 player (she optimizes relative to some belief about what Bob does), but
not necessarily higher.2 So, there is a question as to whether the Stiller and Dunbar [30, 2007]
limit of level 4 ‘translates’ to a limit of level 4 or level 3 in a game context. Another distinction
is that Stiller and Dunbar [30, 2007] find a range of limits across subjects, with a significant
number of subjects succeeding in tasks requiring 5 or more levels of thinking. This may reflect
the greater degree of priming involved in asking subjects to read narratives which point rather
directly to what one character thinks another character is thinking, as compared with asking
subjects to play games.

In sum, we believe there is good evidence of a cognitive limit on thinking about thinking
that comes into operation at a small finite number of levels. A limit of three to four levels receives
some good empirical support.3 No doubt, this is a soft not hard upper bound, influenced by
many factors including contextual ones as just mentioned, presence or absence of memory aids,
auxiliary incentives, and more. Nevertheless, we will use this limit as a broad guideline in the
following sections.

3 Models of Thinking about Thinking

Harsanyi [15, 1967-8] was first in game theory to recognize that uncertainty on the part of players
about some aspect of the structure of a game (a common example is uncertainty about other
players’ payoff functions) would naturally lead players to form hierarchies of beliefs. In such a
hierarchy, a particular player has a first-order belief (over the uncertainty in question), a second-
order belief (over other players’ first-order beliefs), and so on to higher orders. More recently,
epistemic game theory has developed to address uncertainty on the part of players about the
strategies chosen in a game; see Brandenburger [5, 2014, Introduction] for an overview. Here,
too, players are assumed to form hierarchies of beliefs — this time, over strategies in the game
rather than over structure of the game.

These advances improve the descriptive power of game theory in that they enable us, as game
theorists, to include epistemic components of a strategic situation that traditionally were left
out of a game description. With this richer description, game theory can now ask and answer
questions of the form: “If the players in a game think such-and-such (including what they think
others think, and so on), then what play(s) of the game will be observed?” But these advances
do not seem, in themselves, to help in understanding a process by which players might build
hierarchies of beliefs. It is useful to look at why this is so.

Suppose there is a space of underlying uncertainty S, which we take to be finite, as depicted in
Figure 1. (This space might describe uncertainty about structure or strategies or both.) Define
the space of first-order beliefs on S to be the space M(S) of probability measures on S. (This

2In particular, if Left is a bad choice for Bob — a dominated choice, say — then Ann would be coded as
precisely a level-1 player.

3Keynes, always the intuitive thinker, alighted on a similar number of levels in his famous analogy between
the stock market and a beauty contest [18, 1936]: “It is not a case of choosing those [faces] which, to the best of
one’s judgment, are really the prettiest, nor even those that average opinion genuinely thinks the prettiest. We
have reached the third degree where we devote our intelligences to anticipating what average opinion expects the
average opinion to be. And there are some, I believe, who practice the fourth, fifth and higher degrees.”
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Figure 1: The sets S, M(S), and M(M(S)) (resp.)

is often identified with the (|S| − 1)-dimensional simplex.) Note that M(S) is an infinite space,
so to define second-order beliefs on S, i.e., to define probability measures on M(S), we need
to put a measure-theoretic structure on M(S). In probability theory, a standard notion of a
well-behaved infinite space X is that it is Polish.4 This works well for defining hierarchies of
beliefs, because the spaceM(X) is again Polish.5 In our case, the spaceM(M(S)) will then be
well-defined (Polish), and the same will be true of all higher-order spaces of beliefs.

This construction gives us a way to describe hierarchies of beliefs, but it does not seem very
satisfactory as a belief formation process. Suppose we envisage a player as scanning each belief
space (first-order, second-order, etc.) and choosing a belief to hold from each. If we count cases at
each level, then this process would involve high complexity even at the level of first-order beliefs,
but then no further increase in complexity. This is because the spaceM(S) of possible first-order
beliefs is already uncountably infinite, but then all higher-order spaces are no larger. (A standard
fact: All uncountably infinite Polish spaces have the cardinality 2ℵ0 of the continuum.6) This
jump and then lack of further increase in complexity does not fit well with the empirical evidence
reviewed in Section 2.

Admittedly, case counting is a very crude measure of complexity of a space of probability
measures. Very likely better would be some measure based on the complexity of search in an
infinite space. But, rather than stipulate such a measure, we will instead review some neural
evidence on belief formation in games reported in Bhatt and Camerer [4, 2005] and build a —
very simple — model of belief formation from this evidence.

4 Neural Evidence on Belief Formation

Bhatt and Camerer [4, 2005] conducted an fMRI study of subjects engaged in playing a number
of matrix games. (The games are taken from an earlier study by Costa-Gomes, Crawford, and
Broseta [8, 2001].) Players were asked to make choices and to state first- and second-order
beliefs about strategy choices in the games.7 Point beliefs were elicited, and we will use the
word “thinks” as a shorthand for such beliefs. Write ŝa (resp. r̂a) for the proposition that Ann
chooses strategy sa (resp. ra), write ŝb (resp. r̂b) for the proposition that Bob chooses strategy sb
(resp. rb), and write �a (resp. �b) for the modal operator “Ann thinks” (resp. “Bob thinks”).8

4A Polish space is a topological space which is separable and completely metrizable (Kechris [17, 1995, p.13]).
5Formally, M(X) is the space of all probability measures on the Borel σ-algebra of X, endowed with the weak

topology. See Kechris op.cit., p.68, pp.109-110, and Theorem 17.23 for definitions and the proof that M(X) is
Polish. This method of constructing hierarchies of beliefs comes from Brandenburger and Dekel [6, 1993].

6Kechris op. cit., Corollary 6.5.
7The games were presented to the players in a ‘transparent’ way, so it is assumed that players were not

uncertain about the structure of the game.
8We will make no formal use of modal logic in this paper, but it will be convenient to adopt some modal-logic

notation.
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Three events concerning a player (here, Ann) were studied in Bhatt and Camerer [4, 2005]:

ŝa (1)

�a ŝb (2)

�a �b r̂a (3)

Brain activity of a player in event (3) was found to have more similarities with activity in
event (1) than with activity in event (2). That is, there was more similarity at the neural level
between choosing a strategy and forming a second-order belief than between forming a first-order
belief and forming a second-order belief. Also, significantly greater activation was found in the
anterior insula region of a player’s brain in event (3) than in event (2). The anterior insula
is part of the insular cortex, itself part of the cerebral cortex. It is associated with, inter alia,
subjective feelings, attention, and, particularly relevant here, cognitive choices and intentions
(Craig [9, 2009]).9

A priori, one might have expected that the neural processes involved in forming first-order
and second-order beliefs would be most similar, and that choice behavior would be most distinct
neurally. The above findings are surprising in this respect, and they prompt Bhatt and Camerer
[4, 2005] to formulate what they call the self-referential strategic thinking hypothesis: Second-
order belief formation is a combination of belief-formation and choice-making processes.

5 An Anchoring and Adjusting Process

The Bhatt and Camerer [4, 2005] hypothesis suggests one way in which we could put structure on
a belief formation process. Rather than inspecting spaces of beliefs as a whole and picking specific
beliefs from them, Ann might select a candidate strategy choice and then examine her view as to
whether or not Bob thinks she intends to make this choice. This sets up the dichotomy: (i) Ann
intends to play strategy sa and thinks Bob thinks this; or (ii) Ann intends to play strategy sa
and it is not the case that she thinks Bob thinks this. Ann repeats this process for the various
different strategy choices she considers from her overall set of possible strategies.

We can call an intended strategy choice for Ann an anchor, with the help of which she
is able to think about what another player might be thinking about her choice. She can stay
with this anchor, or adjust away from it, according as cases (i) or (ii) above obtain. There is
precedent for proposing anchoring and adjusting processes in the ToM literature, albeit not in
the particular context or form used here. See, for example, Epley et al. [11, 2004] and Tamir
and Mitchell [31, 2010]. The latter paper describes an fMRI study where individuals were asked
to report their own preferences and also their judgments about another individual’s preferences.
It specifically tested the hypothesis that judgments further away from the anchor entail greater
cognitive processing than do closer judgments, and found supporting evidence. (It would be
interesting to look for an analogous result in the context of game playing, with an appropriate
metric on strategy sets.)

To specify this process further, we have to be more precise about case (ii) above. We also need
to consider higher-order beliefs. We will undertake these steps in the next section. Beforehand,
let us summarize the steps in this section. The main step is to suppose that a player’s candidate
strategy choices are used to reduce a large space of beliefs to two parts — one part associated
with agreement with a candidate choice and another associated with disagreement. At the same
time, we took the step of restricting the modality of belief for a player to be a point belief.

9The anterior insula has, in addition, been hypothesized to play a fundamental role in human awareness; see
Craig op.cit..
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(Remember that “thinks” is our term for the point-belief modality.) An objection at this point
could be that the move to point beliefs is enough in itself to address the complexity explosion
we saw in Section 3. The use of an anchoring and adjusting process seems superfluous. But our
use of point beliefs is meant only as a first and very crude approximation to a more satisfactory
approach that employs a belief modality in-between the fully probabilistic and one based on point
beliefs. Moreover, we have seen that the anchoring and adjusting process has some empirical
basis, so we want to build a model — albeit a very preliminary one — with this ingredient.

6 Epistemic Equilibrium and Disequilibrium

As Bhatt and Camerer [4, 2005] observe, agreement vs. disagreement between Ann’s choice and
what she thinks Bob thinks she chooses can be thought as an equilibrium vs. disequilbrium
distinction. The epistemic view of Nash equilibrium from Aumann and Brandenburger [2, 1995]
turns out to be well-suited to elaborating this point. We first review [2, 1995].

Say Ann is rational if ŝa and �a r̂b imply that sa maximizes Ann’s (expected) payoff when
she assigns probability 1 to Bob’s choosing rb. Define rationality for Bob similarly (with Ann
and Bob interchanged). Here is a first set of epistemic conditions for Nash equilibrium, based
on [2, 1995]:10

ŝa (4)

ŝb (5)

�a ŝb (6)

�b ŝa (7)

Ann is rational (8)

Bob is rational (9)

These conditions immediately imply that the strategy pair (sa, sb) must constitute a Nash equi-
librium. Here is a second set of epistemic conditions, again based on [2, 1995]:

�a ŝb (10)

�b ŝa (11)

�a �b ŝa (12)

�b �a ŝb (13)

�a [Bob is rational] (14)

�b [Ann is rational] (15)

It is easy to see that the strategy pair (sa, sb) must again constitute a Nash equilibrium.11

The conditions in [2, 1995] were stated for Nash equilibrium as usually defined, i.e., as an
inter-player concept. But they can be immediately modified to yield an intra-player concept,
which is the application we need. To do this, we ‘subjectivize’ the conditions, with respect

10We remind the reader that we are making very ‘soft’ use of modal logic. In particular, conditions (8) and (9)
could be more formally stated but we will not need to do so.

11It is a triviality that these sets of epistemic conditions yield Nash equilibrium. Indeed, conditions (4)-(9)
were termed merely a Preliminary Observation in [2, 1995] for this reason. The purpose of the observation was to
dispel a widespread impression in the literature that play of a Nash equilibrium somehow requires infinite-order
(“common”) knowledge or belief on the part of the players. Conditions (10)-(15) are based on Theorem A in
[2, 1995], which gives epistemic conditions for mixed strategies to constitute a Nash equilibrium. The conditions
trivialize here because we treat only point beliefs.
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to Ann, say. By this we mean that we put the “Ann thinks” operator �a in front of each
of the conditions (4)-(9) (and, subsequently, the conditions (10)-(15)). We adopt the axioms:
ŝa → �a ŝa, �a ŝb → �a �a ŝb, and [Ann is rational]→ �a [Ann is rational]. (These axioms say
that Ann can introspect about her own intentions and beliefs.) We then get:

ŝa (16)

�a ŝb (17)

�a �b ŝa (18)

Ann is rational (19)

�a [Bob is rational] (20)

These conditions are now subjective, because they refer only to Ann’s own action and epistemic
state. They say that Ann thinks that she and Bob play the Nash equilibrium (sa, sb). The
conditions constitute an internal epistemic equilibrium.

Internal epistemic disequilibrium arises when conditions (16)-(20) do not jointly hold, which
raises the question of which of the conditions should be changed. At this point, we follow the
route suggested by the neural evidence in Bhatt and Camerer [4, 2005] and change Ann’s second-
order belief (condition (18)) relative to her choice (condition (16)). Since the beliefs are point
beliefs, we next have to decide how we will implement the idea of ‘taking the negation of a
point belief.’ We do not see clear empirical guidance here, and we restrict ourselves to a kind of
symbolic exploration around the base condition (18).

We first add negation symbols to (18) in the seven possible distinct ways:

¬�a �b ŝa (21)

�a ¬�b ŝa (22)

�a �b ¬ ŝa (23)

¬�a ¬�b ŝa (24)

�a ¬�b ¬ ŝa (25)

¬�a �b ¬ ŝa (26)

¬�a ¬�b ¬ ŝa (27)

These conditions are easier to read when we push the negation symbol in. Write ♦a (resp. ♦b)
for the modal operator “Ann (resp. Bob) considers it possible that”. Then the rewrite rule ¬�a

implies ♦a¬ (likewise for Bob) yields:

♦a ♦b ¬ ŝa (28)

�a ♦b ¬ ŝa (29)

�a �b ¬ ŝa (30)

♦a �b ŝa (31)

�a ♦b ŝa (32)

♦a ♦b ŝa (33)

♦a �b ¬ ŝa (34)

In words, these conditions say, respectively: (28) Ann considers it possible that Bob considers it
possible that Ann does not choose sa; (29) Ann thinks that Bob considers it possible that Ann
does not choose sa; (30) Ann thinks that Bob thinks that Ann does not choose sa; (31) Ann
considers it possible that Bob thinks that Ann chooses sa; (32) Ann thinks that Bob considers it
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possible that Ann chooses sa; (33) Ann considers it possible that Bob considers it possible that
Ann chooses sa; and (34) Ann considers it possible that Bob thinks that Ann does not choose
sa.

Adopting the usual axiom that �a implies ♦a (if Ann thinks a proposition is true then she
certainly considers it possible) and the analogous axiom for Bob, we see that conditions (31),
(32), and (33) are consistent with equilibrium. (They are implied by condition (18).) So, we use
the term “disequilibrium” when any of other conditions — namely, (28), (29), (30), or (34) —
hold. This is what we will mean by the negation of the equilibrium condition (18).

We summarize our belief formation process thus far. In forming a second-order belief, Ann
considers five cases — one case of internal epistemic equilibrium and four cases of internal
epistemic disequilibrium.

Continuing, we next subjectivize conditions (10)-(15), while adopting analogous introspection
axioms to earlier. This yields:

�a ŝb (35)

�a �b ŝa (36)

�a �b �a ŝb (37)

�a [Bob is rational] (38)

�a �b [Ann is rational] (39)

We also assume an analogous belief formation process to earlier, now lifted from comparing
(16) with (18), to comparing (35) with (37). There are fifteen possible ways to add negation
symbols to (37), which, after rewriting and rejecting those propositions which are consistent with
(37), reduce to the following eight cases:

♦a ♦b ♦a ¬ ŝb (40)

�a ♦b ♦a ¬ ŝb (41)

�a �b ♦a ¬ ŝb (42)

�a �b �a ¬ ŝb (43)

♦a �b �a ¬ ŝb (44)

♦a �b ♦a ¬ ŝb (45)

�a ♦b �a ¬ ŝb (46)

♦a ♦b �b ¬ ŝb (47)

In forming a third-order belief, Ann considers nine cases: one case of internal epistemic
equilibrium and eight cases of internal epistemic disequilibrium.

7 Complexity of Thinking About Thinking

We can now summarize our model of belief formation. Ann tentatively fixes a strategy pair
(sa, sb). Relative to this, she considers, in forming an mth-order belief, for m ≥ 2, a total of
2m + 1 cases — one case of internal epistemic equilibrium, and 2m cases of internal epistemic
disequilibrium. Specifically, for her second-order belief, Ann considers five cases, for her third-
order belief, she considers nine cases, for her fourth-order belief, she considers seventeen cases,
and so on. This is the process we envisage for each candidate strategy pair (sa, sb) Ann considers,
and it is repeated for different candidates from the overall set of possible strategy pairs.
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Given the number of assumptions and simplifications we have made, the specific progression
we find from five cases to nine cases to seventeen cases (from second-order to third-order to
fourth-order beliefs) should not be taken literally. Nevertheless, we think there are grounds
for cautious optimism in relating our numbers to empirical findings. Qualitatively, we get an
exponential increase in the number of cases a player has to consider at each level. This finding
of an exponential — rather than linear or polynomial — dependence of number of cases on m
fits well with the empirical finding that a cognitive limit on levels of thinking sets in at small
m. To go further and look for quantitative agreement between a model like ours and cognitive
limits on levels of thinking, we suspect that it will be necessary to include additional ingredients
in the analysis. Consideration of working memory capacity seems very likely to be important.
We do not expect this to be a simple next step, given the shift away from a view that there is a
fixed number of items that can be stored in working memory to a view that there is a tradeoff
between number of items and precision of recall (Ma, Husain, and Bays [21, 2014]).

8 Discussion

An important extension to the game experiments on which we based our assumptions will be to
collect information on players’ higher-order beliefs (beyond the second-order beliefs reported in
Bhatt and Camerer [4, 2005]). In Section 6, we extrapolated the neural evidence relating choice
and second-order beliefs, to hypothesize an analogous relationship between first-order beliefs and
third-order beliefs (conditions (35) and (37)). Clearly, direct evidence is needed to support such
an extrapolation.

A second extension to Bhatt and Camerer [4, 2005] will be to distinguish more clearly internal
epistemic equilibrium (Section 6) from reasoning about levels of rationality. Take a two-by-
two matrix where Ann has a dominant strategy sa (Bob does not), and once Ann’s dominated
strategy is eliminated, Bob has a dominant strategy sb in the remaining submatrix. Then the
conditions (19), (20), and “�a �b [Ann is rational]” together imply conditions (16), (17), and
(18). Thus, a hypothesis on reasoning about levels of rationality implies the internal epistemic
equilibrium hypothesis, which undercuts the justification for the second hypothesis. Clearly, in
games with more than one (pure) Nash equilibrium, this problem does not arise, and it will be
important to study a wide class of games including a variety of games of this kind.

Games with more than two players raise a number of immediate questions. The extension of
the definition of internal epistemic equilibrium is straightforward, but one can envisage several
ways in which the definition of internal epistemic disequilibrium is extended. For example, if Ann
thinks that Bob does not think she chooses the strategy she intends to choose, will Ann necessarily
think the same of Charlie? Or, can she, at the same time, think that Charlie does think she
chooses the strategy she intends to choose? The number of different kinds of disequilibrium that
are allowed will make a big difference to the number of cases that arise at each level of thinking.
Neural monitoring in experiments with n-player games is needed to guide extensions to our
two-player game model in Section 6.

Another question about model building concerns the best belief modality to use. We explained
in Section 3 why we did not choose the probabilistic modality. Instead, we went to the ‘opposite
extreme’ and chose a point belief modality. As already noted, we see this choice as just a starting
point, and it will be important to study intermediate modalities.

In this paper, we depart significantly from more conventional game-theoretic analysis, relative
both to equilibrium theory and to epistemic game theory. First, a comparison with equilibrium
theory. Nash equilibrium has, of course, traditionally been understood as an inter-player con-
cept, which brings in an element of objective correctness. This is immediately clear in conditions
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(4)-(9) in Section 6, where Ann thinks that Bob chooses the strategy sb that he actually does
choose (and likewise with Ann and Bob interchanged). This objective correctness may be a good
assumption in some contexts (e.g., as the outcome of a learning process), but, unsurprisingly, it
has been found empirically invalid in many experiments. (See, among others, Flood [12, 1958]
for early experimental evidence against Nash equilibrium, McKelvey and Palfrey [23, 1992] for a
prominent test in the context of the Centipede Game (Rosenthal [26, 1982]), and Healy [16, 2011]
for a direct test of the epistemic conditions for Nash equilibrium in Aumann and Brandenburger
[2, 1995].)

Once Nash equilibrium is subjectivized, as in conditions (16)-(20), it refers only to an in-
dividual’s own (subjective) state of mind and there is no longer any requirement of objective
correctness. Moreover, we have seen that there is some evidence (Bhatt and Camerer [4, 2005])
that this notion of internal Nash equilibrium has empirical significance in understanding belief
formation. The use of Nash equilibrium as an intra- rather than inter-player concept may be
fruitful in other ways, too.

With respect to epistemic game theory, we have changed the usual line of analysis. The
usual approach is to start with a model of hierarchies of beliefs of the kind reviewed in Section 3
and then, within this model, impose epistemic conditions of interest and deduce what behavior
by the players is consistent with these conditions. This has worked as a deductive exercise, but
seems less suited to building a model of belief formation. For this purpose, we built a model
where a player entertains a candidate strategy choice and considers beliefs that lie in a certain
relationship to this choice.

We emphasize that our model should be seen as highly tentative and, best case, as direction-
ally correct in terms of what accounts for a cognitive limit on thinking about thinking. Also,
our model applies, at least directly, to thinking about thinking in games and not in narratives
or other settings. In all cases, more detailed model building is clearly needed, but, in this paper,
we did not want to get ahead of the neural evidence as we understand it.
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